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Ward identities for transport of classical waves in disordered media

H. T. Nieh,* Liu Chen,† and Ping Sheng
The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

~Received 25 June 1997!

Using field-theoretic formalism, we derive Ward identities for the diffusive transport of classical waves in
disordered media of a quite general nature. We consider three cases: the scalar wave, the elastic wave, and the
electromagnetic wave. For classical waves, it is the energy conservation that underlies the Ward identities, in
contrast to the case of electronic systems, for which the Ward identity is a mathematical statement of charge
conservation. For the three cases of classical waves, the Ward identities are of the same general structure,
which differs from the electronic Ward identity and reflects the fact that energy transport, instead of charge
transport, is accounted for in classical wave systems. The general structure of the Ward identities is seen to be
independent of the details of the wave equations.@S1063-651X~97!06611-7#

PACS number~s!: 03.40.Kf, 41.20.Jb, 62.30.1d, 03.70.1k
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INTRODUCTION

Conservation laws are basic to the dynamical proper
of physical processes. Ward identities corresponding to
conservation laws are explicit expressions that are esse
to a theoretical description of dynamical processes. In e
tronic systems, the often quoted Ward identity@1# is a state-
ment of charge conservation. For classical waves propa
ing in inhomogeneous media, however, it is the Wa
identities forenergy conservationthat underlie the theoreti
cal description of wave transport behavior. There seems t
general confusion in the literature@2,3# concerning the deri-
vation as well as the exact form of the Ward identities for
diffusive transport of various classical waves. The Wa
identity given by Barabanenov and Ozrin@4# for the scalar
wave, for example, is known to be in dispute@2,3#. In the
case of an electromagnetic~EM! wave in inhomogeneou
media, a Ward identity for constant magnetic permeabi
has also been presented in Ref.@5#. We shall comment on the
results of these works later, and note here that our res
differ from them@4,5#.

There exists a very general and well-established quan
field-theoretic method for deriving Ward identities from th
conservation laws. This is the method due to Takahashi@6#,
who generalized the original Ward identity@7# for current
conservation in quantum electrodynamics. In this paper,
though the waves we consider areclassical fields, well-
developed algorithms for quantum fields can nevertheles
borrowed to derive the energy Ward identities for the clas
cal waves, treating the media phenomenologically in ter
of classical characterizations, e.g., the dielectric cons
«(x) and magnetic permeabilitym(x) in the case of the elec
tromagnetic wave. It is well known that the classical fiel
are the limiting cases of their respective quantum fields@8#.
In more exact terminology, the classical fields are quant
fields at the so-called tree, or nonloop, level. It is at this le
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that our results are to be understood; there is no quan
effect involved. In this sense the quantum field-theoretic
proach is used here only as a powerful ‘‘accounting’’ alg
rithm for deriving the desired results.

As one important application of the basic Ward identi
we develop further, with the help of an integral equati
whose validity is on the same footing as the Bethe-Salp
equation, another version of the Ward identity for the d
scription of multiply scattered waves transport in inhomog
neous media@9#. This version of the Ward identity, which
we denote thediffusive Ward identity, is known in particular
to be relevant for the determination of the energy transp
velocity in the wave diffusion constant@10#. We shall see
that it is the energy conservation law in the case of the c
sical waves, in contrast to the charge conservation law in
case of the Schro¨dinger waves~electronic systems!, that is
responsible for the interesting multiple scattering effects
hibited by classical waves in disordered media@10#.

The classical waves we consider are the scalar wave,
elastic wave, and the electromagnetic wave. Although
case of the elastic wave has been discussed elsewhere@11#, it
is included here for completeness.

The approach we adopt, which is imbedded in the form
ism of Lagrangian field theories, is very general in natu
and can be uniformly applied to all classical waves in inh
mogeneous media of considerable complexity and genera
In all the cases we consider, whether it is the scalar wave,
elastic wave, or the electromagnetic wave, the diffus
Ward identities are of the same general structure, i.e., tha
the energy conservation. One point we would like to emp
size, a point which will become clear from the derivations,
that this general structure is not influenced by the details
the various wave equations, as is widely believed.

LAGRANGIANS FOR CLASSICAL WAVES

The starting point of most works on classical waves
based on the wave equations. However, the formalism
Lagrangian field theory provides a more systematic fram
work for the consideration of many formal aspects of t
classical wave systems. The quantum version of this form
ism, namely, quantum field theory, is known to have be
successfully applied to fundamental theories, such as

i-
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1146 57H. T. NIEH, LIU CHEN, AND PING SHENG
quantum electrodynamics. This algorithm can be usefu
employed in treating certain theoretical aspects of the cla
cal waves. Below, we use it to derive the Ward identity a
mathematical statement of the energy conservation.

The starting point of our approach is the Lagrangian d
sity. It gives rise to the desired wave equation as a resu
the action principle, and conservation laws as conseque
of the symmetry properties of the Lagrangian. Below we
the Lagrangian densities for the scalar wave, the ela
wave, and the electromagnetic wave.

Scalar wave

There are two versions of the wave equation for the sc
wave amplitudef(x,t):

@«~x!] t
22¹2#f~x,t !50, ~1!

F] t
22“•

1

«~x!
“Gf~x,t !50. ~2!

For Eq.~1!, the Lagrangian density is

L ~S1!5 1
2 @«~x!] tf] tf2“f•“f#, ~S1!

while, for Eq. ~2!, it is

L ~S2!5
1

2 F] tf] tf2
1

«~x!
“f•“f G . ~S2!

Elastic wave

Elastic waves are vector in nature. The wave equation
locally isotropic but inhomogeneous media is of the form

r s̈j2] i@l~“•s!d i j 1m~] isj1] j si !#50, ~3!

wheresi(x,t) is the displacement vector,r~x! the mass den-
sity, l~x! the longitudinal Lame’s~elastic! constant, andm~x!
the shear modulus. The parametric functionsr, l, andm are
position dependent, but assumed to be time independent.
Lagrangian density for the elastic wave equation~3! is

L ~EL!5 1
2 @r~ ṡ!22l~Tr« i j !

222m« i j « j i #, ~EL!

where the strain tensor is given by

« i j 5
1
2 ~] isj1] j si !. ~4!

Electromagnetic wave

The electromagnetic wave equations are the Maxw
equations. We choose to use the four-dimensional notat
xm5(t,x), wherem5(0,1,2,3), and the metric tensor wit
signature

gmn5gmn5~1,21,21,21!. ~5!

In addition, Greek subscripts~superscripts! denote four-
vector indices~0,1,2,3!, and Roman subscripts~superscripts
the 3-vector indices. The four-potential is denoted byAm,
and the field strength tensor by

Fmn5]mAn2]nAm. ~6!
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For a static inhomogeneous medium with dielectric coe
cient «~x! and magnetic permeabilitym~x!, we define

H0k5«F0k,
~7!

Hk15mFk1.

The source-free Maxwell equations can be written as

]kH
k050, ~8a!

]0H011]kH
k150, ~8b!

or, in four-dimensional notation,

]mHmn50. ~9!

The Lagrangian density that yields Eq.~9! is

L ~EM!52 1
4 HmnFmn . ~EM!

SCALAR WAVE CASE

The case of the scalar wave is the simplest of the th
Since the train of considerations is very similar in all t
three cases, we treat the case of the scalar wave in deta
fully illustrate the major points of our derivation.

There are two versions of the scalar wave equation.
consider the version corresponding to

@«~x!] t
22¹2#f~x,t !50, ~1!

with the Lagrangian density given by

L ~S1!5 1
2 @«~x!] tf] tf2“f•“f#. ~S1!

Known as Noether’s theorem, the symmetry properties
the Lagrangian density directly imply the corresponding
cal conservation laws. Because of the coordinate depend
of «~x! in Eq. ~S1!, the Lagrangian density is not invarian
under spatial translations. As a consequence, wave mom
tum is not conserved; momentum can be interchanged
tween wave and medium. However, the invariance prope
of Eq. ~S1! under time translation leads to the conservat
of the wave energy. There is a well-established procedur
finding the expression for the energy-momentum tensor@12#,
which, for the one-component scalar wavef, is given by

Tmn5
]L

]~]mf!

]f

]xn2gmnL. ~10!

While the energy density isT00, the momentum density o
the Poynting vector isTk0 . ~We note thatTk0ÞT0k in non-
uniform media as in our present case.! Explicitly, we have

T005
1
2 ~«ḟḟ1“f•“f!, ~11!

Tk05]kfḟ. ~12!

The local energy conservation law that follows from No¨t-
her’s theorem is

]mTm05]mTm050, ~13!

which can be explicitly verified by using wave equation~1!.
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57 1147WARD IDENTITIES FOR TRANSPORT OF CLASSICAL WAVES . . .
Using the formalism of quantum field theory, we quanti
the wave system by imposing equal-time commutation re
tions on the cannonically conjugate variables. Conjugate
the field f(x,t) is the generalized momentum variablep,
given by

p~x,t !5
]L

]ḟ
5«~x!ḟ~x,t !. ~14!

The quantization conditions are

@f~x,t !,p~y,t !#5 id~x2y!,

@f~x,t !,f~y,t !#50, ~15!

@p~x,t !,p~y,t !#50.

We recall that the« in Eq. ~14! is a numerical function, no
a quantum operator.

We define the propagator functionG(x,t;x8,t8) by the
‘‘vacuum’’ expectation value of the time-ordered product

G~x,t;x8,t8!5 i ^0uT$f~x,t !f~x8,t8!%u0&. ~16!

Hereu0&, normalized to 1, represents the ground state of
system, which is not translationally invariant in our prese
case of inhomogeneous media, andT denotes time ordering
according to the definition

T$f~x,t !f~x8,t8!%[u~ t2t8!f~x,t !f~x8,t !1f~ t82t !

3f~x8,t8!f~x,t !, ~17!

whereu(t) is the step function:u(t)50 for t,0, and 1 for
t.0. On using the wave equation~1!, the property

] tu~ t !5d~ t !, ~18!

and the quantization conditions~15!, it is easy to verify that

@«~x!] t
22¹2#G~x,t;x8,t8!5 id~ t2t8!

3^0u@«~x!ḟ~x!,f~x8!#u0&

5d4~x2x8!, ~19!

whered4(x2x8)5d(t2t8)d(x2x8). The propagator func-
tion G defined by Eq.~16! is, therefore, the Green’s functio
of the wave equation~1!. We note that by its definition~16!,
the Green’s function is symmetric:

G~x,x8!5G~x8,x!, ~20!

where we have opted for the four-dimensional notati
G(x,x8)5G(x,t;x8,t8), etc.

To each conservation law there is a corresponding W
identity, which relates a vertex function to the Green’s fun
tion. The original Ward identity@7# and its generalization
the Ward-Takahashi identity@6#, are mathematical state
ments of electric charge conservation. In classical wave
tems like the scalar wave system, there is no charge
volved; the original Ward-Takahashi identity@1# obviously
does not apply. In cases of classical waves instatic inhomo-
geneous media, it is the energy conservation and the co
-
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sponding Ward-Takahashi identity that are relevant. Th
two types of Ward-Takahashi identities are naturally diffe
ent in structure.

We follow the well-established procedure, due to Tak
hashi@6#, to derive the Ward-Takahashi identity for the e
ergy conservation. For this purpose, we consider the th
point function ^0uT$Tm0(x)f(y)f(z)%u0&, which has six
possible orderings of the three times associated withx, y,
andz. As a consequence of the energy conservation relat
~13!, we obtain

]m
x T$Tm0~x!f~y!f~z!%5d~x02y0!T$@T00~x!,f~y!#f~z!%

1d~x02z0!T$f~y!

3@T00~x!,f~z!#%. ~21!

The equal-time commutators in the above equation can
easily evaluated by using the quantization conditions~15!, to
yield

d~x02y0!@T00~x!,f~y!#5
1

i
d4~x2y!ḟ~y!, etc.

~22!

Because of

T$ḟ~y!f~z!%5
]

]ty
T$f~y!f~z!%2d~y02z0!@f~y!,f~z!#

5
]

]ty
T$f~y!f~z!%,

from Eq. ~21! we obtain the relation

i ]m
x T$Tm0~x!f~y!f~z!%5d4~x2y!

]

]ty
T$f~y!f~z!%

1d4~x2z!
]

]tz
T$f~y!f~z!%,

~23!

which, upon taking the ‘‘vacuum’’ expectation value, yield

]m
x ^0uT$Tm0~x!f~y!f~z!%u0&52d4~x2y!

]

]tx
G~x,z!

2d4~x2z!
]

]tx
G~y,x!.

~24!

This equation provides the basis for the derivation in the n
section of the Ward-Takahashi identity for energy conser
tion in disordered media.

DIFFUSIVE TRANSPORT OF SCALAR WAVES
IN DISORDERED MEDIA

Theoretical description of diffusive behaviors of classic
waves in disordered media is of great interest. For exam
the analog of the electronic Anderson localization@13# in
classical wave systems@14# is directly related to the diffusive
nature of wave transport as a result of multiple~elastic and
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1148 57H. T. NIEH, LIU CHEN, AND PING SHENG
inelastic! scatterings. While in the case of an electronic s
tem the conservation law of electric charge underlies the
fusion of electrons, it is the conservation law of energy t
underlies the diffusive transport of classical waves. It
therefore, of importance to have a clear understanding of
implications of the energy conservation in a diffusive en
ronment.

In disordered media, the diffusive transport of sca
waves takes place as a result of random multiple elastic s
terings of waves by the disordered scatterers, phenom
logically represented by the parametric function«(xW ). The
disordered nature of the medium is accounted for by con
ering a statistical ensemble of medium configurations@15#.
The diffusive wave transport behavior, which is stochastic
nature, is obtained by averaging the effects of multiple sc
terings over different configurations of the ensemble. T
statistical treatment we refer to as ensemble averaging
configuration averaging@9#.

The ‘‘vacuum’’ expectation value
^0uT$Tm0(x)f(y)f(z)%u0& in the preceding section, in
terms of a diagram, is two waves emerging from the ene
vertex atx, one propagating toy, and the other toz, under-
going multiple scatterings with the scatterers of the medi
along the way. When configuration averaging is applied to
the disordered medium mediates an effective interaction,
tistical in nature, in the wave system@15#. The net effect is
the introduction of an extended structure to the energy ve
and the ‘‘averaging’’ of the wave propagation function
This chain of considerations dictates the following definiti
of the energy-vertex functionGm(huxuz) by

^0uT$Tm0~x!f~y!f~z!%u0&av

5E d4h d4§2
1

i
G~e!~y2h!Gm~huxu§!

1

i
G~e!~§2z!,

~25!

where the left-hand side is the configurationally averag
‘‘vacuum’’ expectation value, andG(e) the averaged propa
gation function. Use has also been made of the fact that
averaged propagation function depends only on the dif
ence of the two coordinates.

Application of configuration averaging to both sides
Eq. ~24! yields the following equation:

]x
mE d4h d4§G~e!~y2h!Gm~huxu§!G~e!~§2z!

5d4~x2y!
]

]tx
G~e!~x2z!1d4~x2z!

]

]tx
G~e!~y2x!.

~26!

Making use of the inverse of the Green’s functio
G(e)21(z2§8), defined by

E d4z G~e!~§2z!G~e!21~z2§8!5d4~§2§8!, etc.,

~27!

we obtain from Eq.~26! the Ward-Takahashi identity for
energy conservation:
-
f-
t
,
e

-

r
at-
o-

d-

n
t-
s
or

y

t,
a-

x
.

d

he
r-

]x
mGm~huxu§!5G~e!21~h2x!

]

]tx
d4~x2§!

1G~e!21~x2§!
]

]tx
d4~h2x!. ~28!

This is to be contrasted with the original Ward-Takaha
identity @6,7,16# for charge conservation, which is of th
form

]x
mGm

~charge!~huxu§!5G̃21~h,x!
1

i
d4~x2§!

2G̃21~x,§!
1

i
d4~h2x!, ~29!

where Gm
~charge! is the charge vertex function, andG̃ is the

electron Green’s function. While Eq.~29! describes the flow
of charge, Eq.~28! describes the flow of energy, signified b
the unmistakable signature of thelinear time derivative.

It is more useful to derive an alternative version of t
Ward identity that relates various scattering effects, with
the involvement of the vertex functionGm. This can be
achieved with the help of an integral equation that relates
energy vertex functionGm to the wave-wave, or two-particle
scattering kernelK. Considerations similar to those that a
used to derive the Bethe-Salpeter equation@15# lead to the
integral equation

Gm~huxu§!5Gm
~0!~huxu§!2E d4 y d4y8d4z d4z8G~e!

3~z82z!Gm~zuxuy!G~e!~y2y8!K~h§;y8z8!,

~30!

which, we note, has a structure similar to a correspond
integral equation in quantum electrodynamics@17#. Here,
Gm

(0) denotes the vertex function for a homogeneous re
ence medium, andK(h§;y8z8) the irreducible wave-wave
scattering kernel, usually referred to as the Bethe-Salp
kernel.

The structure of the integral equation~30! is schemati-
cally shown in Fig. 1. Heuristically, the picture is as follow
At the vertex emerge two waves, which undergo multip
scatterings with the medium as well as~effective! collisions
with each other as they propagate. The integral equation i
economic representation of those multiple scatterings
terms of the Green’s functions, which include all scatteri
effects with the medium. The irreducible ‘‘two-particle’’ ker
nel, K(hz;y8z8), summarizes the~effective! wave-wave
scatterings@17# from the two input channels~h;z! to the two
output channels (y8;z8).

FIG. 1. Generic diagram showing the schematic content of E
~30!, ~63!, and~87!.
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By differentiating Eq.~30! and using Eq.~26!, we obtain

]x
mGm~huxuz!2]x

mGm
~0!~huxuz!

52E d4y d4zFd4~x2z!
]

]tx
G~e!~x2y!

1d4~x2y!
]

]tx
G~e!~z2x!GK~hz;yz!. ~31!

The use of Eq.~28! yields

@G~e!21~h2x!2G~0!21~h2x!#
]

]tx
d4~x2z!

1@G~e!21~x2z!2G~0!21~x2z!#
]

]tx
d4~h2x!

52E d4y d4zFd4~x2z!
]

]tx
G~e!~x2y!

1d4~x2y!
]

]tx
G~e!~z2x!GK ~e!~hz;yz!, ~32!

whereG(0) is the Green’s function for the homogeneous r
erence medium. Due to configurational averaging over
coordinates of the scatterers, only three of the four coo
nates inK(hz;yz) are independent. We choose (h2y), (z
2z), and (y2z) to be the three independent coordinat
Furthermore, since the two input channels are mediated
an effective static potential which is time independent, i
plied by the independence of«~x! on time, (y2z) can there-
fore be replaced by (y2z). We shall use the notation

K~hz;yz!5U~h2y,z2z,y2z!. ~33!

By using the inverse of the configurationally averag
Green’s function in the form

G~e!215G~0!212S, ~34!

whereS is the self-energy operator that accounts for all
multiple scatterings, one obtains the multiple-scattering fo
of the Ward identity, which we shall name thediffusive Ward
identity:

S~h2x!
]

]tx
d4~x2z!1S~x2z!

]

]tx
d4~h2x!

5E d4y d4zFd4~x2z!
]

]tx
G~x2y!1d4~x2y!

]

]tx

3 G~z2x!GU~h2y,z2z,y2z!. ~35!

In momentum space, thediffusive Ward identityis of the
form

q0S~q1p!2~q01p0!S~q!

5E d3v

~2p!3 @q0G~e!~q1v!2~q01p0!

3G~e!~q1p1v!#U~2q,q1p,v!, ~36!
-
e
i-

.
by
-

e

where

S~x!5E d4q

~2p!4 eiq•xS~q!, etc. ~37!

We note that the energy coefficientsq0 and (q01p0) in Eq.
~36! reflect the time derivatives in Eq.~35!, which can be
traced to the time derivatives in the basic Ward-Takaha
identities ~26! or ~28!. We remind ourselves that the linea
time derivative is a signature of energy flow. In the mo
conventional form, thediffusive Ward identityis expressed
as

E d3v

~2p!3 @G~e!~q1v!2G~e!~q1p1v!#

3U~2q,q1p,v!

5S~q1p!2S~q!2E~q,p!, ~38!

with

E~q,p!5
p0

q0
FS~q!2E d3v

~2p!3 G~e!~q1p1v!

3U~2q,q1p,v!G . ~39!

The diffusive Ward identity is crucial for the derivation o
wave diffusive transport behavior on the basis of the Bet
Salpeter equation, the basic reason being that it is the en
that is being diffusively transported. As such, it inevitab
affects the wave diffusion constant, which is generally re
ognized to be the product of the transport velocity and
transport mean free path. In this context, we point out t
the termE(q,p) in Eq. ~38! has indeed been recognized
affect the energy transport velocity that appears in the di
sion constant, especially near resonant scatterings@10#. On
the other hand, as is clear from the derivation of the diffus
Ward identity ~38!, the origin of theE(q,p) term can be
traced to the presence of the time derivatives in the orig
form of the Ward-Takahashi identities~26! or ~28!.

We note that our result~36! or ~38! differs from the result
of Ref. @4#. The difference will be discussed in a later secti
when we discuss the case of electromagnetic waves.

ALTERNATIVE VERSION OF THE SCALAR WAVE

Another version of the scalar wave equation is

F] t
22“•

1

«~x!
“Gf~x,t !50. ~2!

The Lagrangian density corresponding to this equation is

L ~S2!5
1

2 F] tf] tf2
1

«~x!
“f•“f G . ~S2!

In this case, the energy-momentum densities, accordin
the general formula~10!, are

T00
~S2!5

1

2 S ḟḟ1
1

«
“f•“f D , ~40!

Tk0
~S2!5

1

«
]kf]0f, ~41!
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which again satisfies the conservation equation

]mTm0
~S2!50. ~42!

The same quantization conditions~15! are imposed on the
field f and its conjugate, which is

p~S2!~x,t !5ḟ~x,t !. ~43!

It can be easily verified that the propagator function, defin
by

G~x,x8!5 i ^0uT$f~x!f~x8!%u0&,

satisfies

F] t
22“•

1

«~x!
“GG~x,x8!5d4~x2x8!, ~44!

and is the Green’s function for the scalar wave equation~2!.
We can proceed in complete parallel to the previous c

to derive the basic Ward-Takahashi identities~26! or ~28!
and the diffusive Ward identities~36! or ~38!. The forms of
the Ward identities are exactly the same as the previous c
Only the precise contents of the Green’s functions are dif
ent in the two cases.

ELASTIC WAVE CASE

The case of the elastic wave has been considered in d
elsewhere@11#. For completeness, we present a brief acco
here. The elastic wave equation is

r s̈j2] i@l~“•s!d i j 1m~] isj1] j si !#50, ~3!

or,

Oi j sj50, ~45!

where

Oi j 5r~] i !
2d i j 2] i~l] j !2] j~m] i !2d i j “•~m“ !. ~46!

The Lagrangian density for the elastic wave equation
given by

L ~EL!5 1
2 @r~ ṡ!22l~Tr« i j !

222m« i j « j i #, ~EL!

with

« i j 5
1
2 ~] isj1] j si !. ~4!

The formula for the energy-momentum density is

Tmn
~EL!5(

i 51

3
]L ~EL!

]~]msi !

]si

]xn2gmnL ~EL!, ~47!

according to which,

T00
~EL!5 1

2 @r~ ṡ!21l~Tr« i j !
212m« i j « j i # ~48!

and

Tk0
~EL!5l~“•s!ṡk1m ṡj~] j sk1]ksj !. ~49!

The energy conservation equation may be verified to be
d

e

se.
r-

ail
t

s

]mTm0
~EL!50. ~50!

The system is quantized by imposing commutation re
tions on the fieldssi and their conjugates given by

p i5
]L ~EL!

]si
5r ṡi . ~51!

Quantization conditions are

@si~x,t !,p j~y,t !#5 id i j d~x2y! ~52!

and

@si~x,t !,sj~y,t !#50,
~53!

@p i~x,t !,p j~y,t !#50.

We note that whilesi are quantum operators,r is a numerical
function.

The propagator functionGjk(x,x8) is defined by

Gjk~x,x8!5 i ^0uT$sj~x!sk~x8!%u0&. ~54!

We note that, by definition,

Gjk~x,x8!5Gk j~x8,x!. ~55!

On account of the elastic wave equation~3! or ~45! and the
commutation relations~52! and ~53!, one can straightfor-
wardly prove, as in the scalar wave case, that the propag
function defined in Eq.~54! is the Green’s function for the
elastic wave equation, and satisfies

Oi j Gjk~x,x8!5d ikd4~x2x8!. ~56!

As in the case of the scalar waves, we consider
‘‘vacuum’’ expectation valuê0uT$Tm0

(EL)(x)s1(y)sm(z)%u0&.
We can easily verify that

]x
mT$Tm0

~EL!~x!s1~y!sm~z!%

5d~x02y0!T$@T00
~EL!~x!,s1~y!#sm~z!%

1d~x02z0!T$s1~y!@T00
~EL!~x!,sm~z!#%

5
1

i
d4~x2y!T$ṡ1~y!sm~z!%

1
1

i
d4~x2z!T$s1~y!ṡm~z!%

5
1

i
d4~x2y!

]

]ty
T$s1~y!sm~z!%

1
1

i
d4~x2z!

]

]tz
T$s1~y!sm~z!%, ~57!

from which we obtain
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]x
m^0uT$Tm0

~EL!~x!s1~y!sm~z!%u0&

52d4~x2y!
]

]tx
Glm~x,z!2d4~x2z!

]

]tx
Glm~y,x!.

~58!

The energy irreducible vertex functionGm
jk(huxuz), defined

by

^0uT$Tm0
~EL!~x!s1~y!sm~z!%u0&av

5E d4h d4z
1

i
Gl j

~e!~y2h!Gm
jk~huxuz!

1

i
Gkm

~e!~z2z!,

~59!

satisfies

]x
mE d4h d4zGl j

~e!~y2h!Gm
jk~huxuz!Gkm

~e!~z2z!

5d4~x2y!
]

]tx
Glm

~e!~x2z!1d4~x2z!
]

]tx
Glm

~e!~y2x!.

~60!

Making use of the inverse of the Green’s functio
Gil

(e)21(h8,y), defined by

E d4y Gil
~e!21~h82y!Gl j

~e!~y2h!5d i j d
4~h82h!, etc.,

~61!

we obtain the energy Ward-Takahashi identity for the ela
wave in its basic form:

]x
mGm

i j ~huxuz!5Gi j
~e!21~h2x!

]

]tx
d4~x2z!

1Gi j
~e!21~x2z!

]

]tx
d4~h2x!. ~62!

Except for the vector indices in the definitions of the vert
function and the Green’s function, the structure of this ide
tity is of the same form as the corresponding identity~28! for
the scalar wave. Again, there is the appearance of the li
time derivative, which is a signature for energy flow.

To derive thediffusive Ward identityfor the elastic wave,
we make use of an integral equation for the vertex funct
similar to the integral equation~30! for the scalar wave case
It is

Gm
ab~huxuz!

5Gm
~0!ab~huxuz!2E d4y d4y8d4z d4z8Gjl

~e!~z2z8!

3Gm
im~z8uxuy8!Gmi

~e!~y82y!Kab; i j ~hz;yz!, ~63!

and is understood to hold for the configurationally averag
quantities. Here,Kab; i j (hz;yz) is the ‘‘two-particle’’ Bethe-
Salpeter kernel that also appears in the Bethe-Salpeter e
tion. The use of Eq.~62!, in terms of the configurationally
averaged quantities, gives
ic

-

ar

n

d

ua-

@Gab
~e!21~h2x!2Gab

~0!21~h2x!#
]

]tx
d4~x2z!

1@Gab
~e!21~x2z!2Gab

~0!21~x2z!#
]

]tx
d4~h2x!

52E d4y d4zFd4~x2z!
]

]tx
Gji

~e!~x2y!

1d4~x2y!
]

]tx
Gji

~e!~z2x!GUab; i j ~h2y,z2z,y2z!.

~64!

whereGab
(0) is the Green’s function in the homogeneous r

erence medium, and

Kab; i j ~hz;yz!5Uab; i j ~h2y,z2z,y2z!. ~65!

Again, the static property of the medium has been made
of, namely, the parametric functionsr~x! andm~x!, are inde-
pendent of time. In terms of the ‘‘self-energy’’Sab , defined
by

Gab
~e!215Gab

~0!212Sab , ~66!

from Eq. ~64! one obtains the energydiffusive Ward identity
for elastic waves:

Sab~h2x!
]

]tx
d4~x2z!1Sab~x2z!

]

]tx
d4~h2x!

5E d4y d4zFd4~x2z!
]

]tx
Gji

~e!~x2y!

1d4~x2y!
]

]tx
Gji

~e!~z2x!G
3Uab; i j ~h2y,z2z,y2z!, ~67!

or, in terms of the momentum-space representation,

q0Sab~q1p!2~q01p0!Sab~q!

5E d3v

~2p!3 @q0Gji
~e!~q1v!

2~q01p0!Gji
~e!~q1p1v!#Uab; i j ~2q,q1p,v!,

~68!

where

Sab~x!5E d4q

~2p!4 eiq•xSab~q!, etc.

Another form is
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E d3v

~2p!3 @Gji
~e!~q1v!2Gji

~e!~11p1v!#Uab; i j

3~2q,q1p,v!5Sab~q1p!2Sab~q!2Eab~q,p!,

~69!

with

Eab~q,p!5
p0

q0
FSab~q!2E d3v

~2p!3 Gji
~e!~q1p1v!Uab; i j

3~2q,q1p,v!G . ~70!

ELECTROMAGNETIC WAVE CASE

The case of the electromagnetic wave is similar to
much more complicated than the case of the elastic wa
The tricky complication here is caused by the well-know
gauge freedom of the electromagnetic field. Fortunat
there exists a wealth of accumulated knowledge on how
deal with and even to exploit the gauge freedom in ga
theories, of which the quantum electrodynamics is the s
plest. One lesson learned is that one can judiciously choo
particular gauge for a particular purpose, knowing that
final result is independent of the gauge chosen. In our pre
case of electromagnetic waves, the field equations are
Maxwell equations

]kH
k050, ~8a!

]0H011]kH
kl50, ~8b!

or

]mHmn50, ~9!

where

H0k5«F0k,
~7!

Hkl5mFkl.

In terms of the four-potentialAm , the field strength tensor i

Fmn5]mAn2]nAm .

It is clear that Eq.~9! is invariant under gauge transform
tions. Thus, in material media~as opposed to vacuum!, we
still have a gauge invariant theory. In our considerations
follow it is most convenient to choose a gauge such that

A050, ~71!

This is the so-called temporal gauge@18#. This gauge condi-
tion eliminates one of the four apparent degrees of freed
represented by the four-potentialAm . Since the Maxwell
system has only two intrinsic degrees of freedom, we nee
impose another condition in addition to Eq.~71!. It is known
@18# that this additional condition is a constraint on t
physical states based on Eq.~8a!:

]kH
k0uc&50. ~72!
t
e.

,
to
e
-
a

e
nt
he

o

m

to

This is the so-called Gauss-law constraint. In this gauge,
equation of motion~8b! is of a form that involves only the
spatial components of the vector potential:

Õi
jA

j50, ~73!

where

Õi
j5«~] t!

2d i
j1~]km!~d i

j]
k2dk

j]
i !

1m~d i
j]k]

k2dk
j]k]

i !. ~74!

The Lagrangian density is

L ~EM!52 1
4 HmnFmn . ~EM!

The canonical conjugate toAi is

p i5
]L ~EM!

]~]0Ai !
5Hi05«~x!~] iA02]0Ai !. ~75!

Under the weak constraint condition~72!, the quantization
conditions are@19#

@Ai~x,t !,p j~y,t !#5 id i
jd3~x2y!, ~76!

and

@Ai~x,t !,Aj~y,t !#50,
~77!

@p i~x,t !,p j~y,t !#50.

The energy-momentum tensor is given by

Tmn
~EM!5Hm

lFln2gmnL ~EM!. ~78!

The energy conservation equation is

]mTm0
~EM!50. ~79!

For the electromagnetic field, the propagator functi
G̃jk(x,y) is similarly defined by

G̃jk~x,y!5 i ^0uT$Aj~x!Ak~y!%u0&, ~80!

which can be verified to satisfy@19#

Õ~x!
i
j G̃

jk~x,y!5 id~x02y0!^0u@«~x!Ȧi~x!,Ak~y!#u0&

5d ikd4~x2y!, ~81!

and is, therefore, the Green’s function for the wave equa
~73!. We note that in the derivation of Eq.~81! the temporal
gauge condition~71! played a crucially important role; it is
in this gauge only that the propagator function defined by
~80! is the Green’s function satisfying Eq.~81!.

Again, we consider the ‘‘vacuum’’ expectation value
T$Tm0

(EM)(x)A1(y)Am(z)%, for which we can similarly prove,
on using the commutation relations~76! and ~77! as well as
the temporal gauge condition~71!, that
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]x
m^0uT$Tm0

~EM!~x!A1~y!Am~z!%u0&

5
1

i
d4~x2y!^0uT$F01~x!Am~z!%u0&

1
1

i
d4~x2z!^0uT$F0m~x!A1~y!%u0&

5
1

i
d4~x2y!^0uT$Ȧ1~x!Am~z!u0&

1
1

i
d4~x2z!^0uT$Ȧm~x!A1~y!%u0&

52d4~x2y!
]

]tx
G̃lm~x,z!

2d4~x2z!
]

]tx
G̃ml~x,y!. ~82!

Again, the temporal gauge condition~71! is crucial in the
above derivation. The irreducible energy vertex functi
G̃m

jk(juxuh) is defined by

^0uT$Tm0
~EM!~x!A1~y!Am~z!%u0&av

5E d4h d4z
1

i
G̃l j

~e!~y2h!G̃m
jk~huxuz!

1

i
G̃km

~e!~z2z!.

~83!

It then follows from Eq.~82! that

]x
mE d4h d4z Gl j

~e!~y2h!Gm
jk~huxuz!G̃km

~e!~z2z!

5d4~x2y!
]

]tx
G̃lm

~e!~x2z!

1d4~x2z!
]

]tx
G̃lm

~e!~y2x!. ~84!

Upon using the inverse of the Green’s function G˜
i l
(e)21(h8

2y), defined by

E d4y G̃il
~e!21~h82y!G̃l j ~y,h!5d i j d

4~h82h!, etc.,

~85!

we obtain the basic Takahashi-Ward identity correspond
to energy conservation:

]x
mGm

i j ~huxuz!5G̃i j
~e!21~h2x!

]

]tx
d4~x2z!

1G̃i j
~e!21~x2z!

]

]tx
d4~h2x!. ~86!

To apply this basic identity to the diffusive transport
electromagnetic waves, we again make use of the inte
equation for the irreducible energy vertex:
g

al

G̃m
ab~huxuz!5G̃m

~0!ab~huxuz!

2E d4y d4y8d4z d4z8G̃jl
~e!~z82z!G̃m

lm~zuxuy!

3G̃mi
~e!~y2y8!K̃ab; i j ~hz;y8z8!, ~87!

whereK̃ab; i j is the Bethe-Salpeter kernel for the electroma
netic wave system. We combine the two equations~84! and
~87! to arrive at

]x
mG̃m

ab~huxuz!2]x
mG̃m

~0!ab~huxuz!

52E d4y d4zFd4~x2z!
]

]tx
G̃j i

~e!~x2y!

1d4~x2y!
]

]tx
G̃j i

~e!~z2x!G K̃ab; i j ~hz;yz!. ~88!

In terms of the ‘‘self-energy operator’’S̃ab , defined by

G̃ab
~e!215G̃ab

~0!212S̃ab , ~89!

whereG̃ab
(0) is the Green’s function for the homogeneous r

erence medium Eqs.~86! and~88! lead to the following form
of the diffusive Ward identity:

S̃ab~h2x!
]

]tx
d4~x2z!1S̃ab~x2z!

]

]tx
d4~h2x!

5E d4y d4zFd4~x2z!
]

]tx
Gji

~e!~x2y!1d4~x2y!

3
]

]tx
G̃j i

~e!~z2x!GŨab; i j ~h2y,z2z,y2z!. ~90!

In momentum-space representation, Eq.~90! is of the form

q0S̃ab~q1p!2~q01p0!S̃ab~q!

5E d3v

~2p!3 @q0Gji
~e!~q1v!

2~q01p0!Gji
~e!~q1p1v!#Ũab; i j ~2q,q1p,v!,

~91!

where

S̃ab~x!5E dq

~2p!4 eiq•xS̃ab~q!, etc.

or

E d3v

~2p!3 @Gji
~e!~q1v!2Gji

~e!~q1p1v!#

3Ũab; i j ~2q,q1p,v!

5S̃ab~q1p!2S̃ab~q!2Ẽab~q,p!, ~92!

with



tro
st
la

a-

he
-

-

ul
e

ar

n
ty
th

ves,
f.

ge
ing
t
re-

as
tes,
and
. It

ully

to

ed
del
rd
is

g
ong
his

1154 57H. T. NIEH, LIU CHEN, AND PING SHENG
Ẽab~q,p!5
p0

q0
F S̃ab~q!2E d3v

~2p!3 Gji
~e!~q1p1v!Ũab; i j

3~2q,q1p,v!G . ~93!

We note that the Ward identities in the case of the elec
magnetic waves are identical in form to those for the ela
waves. The difference, however, is hidden in the Gauss-
constraint equation~72! imposed on the physical states.

We were brought to the attention of the work of Bar
banenkov, Zurk, and Barabanenkov@5#, who used a com-
pletely different approach to derive a Ward identity for t
electromagnetic wave in media withconstant magnetic per
meability. Their result looks somewhat similar to ours. How
ever, coefficients quadratic in frequencies~energies! perme-
ate throughout their work and appear in their final res
whereas our results, e.g., Eq.~91!, show a linear dependenc
of the coefficients on energy. The origin of thelinear depen-
dence, according to our derivation, is clear. It is the line
time derivative in the basic Ward-Takahasi identity~86!. As
we already emphasized, the linear time derivative is a sig
ture of energy flow. While the version of the Ward identi
of Ref. @5# can be interpreted to be consistent with ours in
limit of infinitesimal frequency differencep0 , it should be
noted that our Ward identities, for general«(x) and m(x),
are valid for arbitrary values of the frequency differencep0 .
fo
ds

v,

ok

e,

y

-

.

-
ic
w

t,

a-

e

The remarks here also apply to the case of scalar wa
where our result is similarly different from the result of Re
@4#.

The system described by the Lagrangian densityL (EM)

has very interesting theoretical properties. It has full gau
symmetry, but apparently describes ‘‘photons’’ propagat
in media with velocities different from the velocity of ligh
in vacuum. The ‘‘photons’’ in inhomogeneous media, the
fore, have effective mass. The Lagrangian, if regarded
defining a truly quantum field-theoretic model, demonstra
even at the classical ‘‘tree’’ level, that masslessness
gauge invariance have no necessary logical relationship
should be of considerable interest to understand more f
the properties of the model.

Note added in proof.Our approach can also be applied
the model considered by Vollhardt and Wo¨lfle @1# for elec-
tronic systems to reproduce the Ward identity they deriv
for charge conservation. In addition, there is in their mo
the conservation of energy, which implies another Wa
identity similar to the ones we obtained in this paper. This
discussed by one of the authors elsewhere@20#.
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