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Ward identities for transport of classical waves in disordered media
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Using field-theoretic formalism, we derive Ward identities for the diffusive transport of classical waves in
disordered media of a quite general nature. We consider three cases: the scalar wave, the elastic wave, and the
electromagnetic wave. For classical waves, it is the energy conservation that underlies the Ward identities, in
contrast to the case of electronic systems, for which the Ward identity is a mathematical statement of charge
conservation. For the three cases of classical waves, the Ward identities are of the same general structure,
which differs from the electronic Ward identity and reflects the fact that energy transport, instead of charge
transport, is accounted for in classical wave systems. The general structure of the Ward identities is seen to be
independent of the details of the wave equati¢84.063-651X%97)06611-1

PACS numbg(s): 03.40.Kf, 41.20.Jb, 62.36.d, 03.70+k

INTRODUCTION that our results are to be understood; there is no quantum
effect involved. In this sense the quantum field-theoretic ap-
Conservation laws are basic to the dynamical propertie§roach is used here only as a powerful “accounting” algo-
of physical processes. Ward identities corresponding to th&thm for deriving the desired results. _ o
conservation laws are explicit expressions that are essential AS ©ne important application of the basic Ward identity,

to a theoretical description of dynamical processes. In eled¥Ve develop further, with the help of an integral equation

tronic systems, the often quoted Ward idenfity is a state- whosg validity is on theT same footing as the _Bethe—SaIpeter
ment of charge conservation. For classical waves propagagduation, another version of the Ward identity for the de-
ing in inhomogeneous media, however, it is the Wargscription of multiply scattered waves transport in inhomoge-
identities forenergy conservatiothat underlie the theoreti- N€0Us medidS]. This version of the Ward identity, which
cal description of wave transport behavior. There seems to b¥€ denote theliffusive Ward identityis known in particular
general confusion in the literatuf@,3] concerning the deri- to be_relgvant for the Qetermlnatlon of the energy transport
vation as well as the exact form of the Ward identities for the?€l0City in the wave diffusion constani0]. We shall see
diffusive transport of various classical waves. The Wardthat it is the energy conservation law in the case of the clas-

identity given by Barabanenov and Ozii] for the scalar sical waves, in contrast to the charge conservation law in the
wave, for example, is known to be in dispJ3]. In the Case of the Schdinger wavegelectronic systems that is

case of an electromagnetiEM) wave in inhomogeneous responsible for the interesting multiple scattering effects ex-

media, a Ward identity for constant magnetic permeabilityiPited by classical waves in disordered media].

has also been presented in H&f. We shall comment on the Th_e classical waves we consider are the scalar wave, the
results of these works later, and note here that our resul8/astic wave, and the electromagnetic wave. Although the
differ from them[4,5]. case of the elastic wave has been discussed else\tidrét

There exists a very general and well-established quanturts included here for completeness. _
field-theoretic method for deriving Ward identities from the . 1 n€ approach we adopt, which is imbedded in the formal-
conservation laws. This is the method due to Takahggihi 1SM Of Lagrangian field theories, is very general in nature,
who generalized the original Ward identify] for current and can be uniformly applied to all classical waves in inho-

conservation in quantum electrodynamics. In this paper, alfogeneous media of considerable complexity and generality.

though the waves we consider actassical fields well- In all the cases we consider, whether it is the scalar wave, the

developed algorithms for quantum fields can nevertheless Hgastic wave, or the electromagnetic wave, the diffusive
borrowed to derive the energy Ward identities for the classivard identities are of the same general structure, i.e., that for

cal waves, treating the media phenomenologically in termd1€ €nergy conservation. One point we would like to empha-
of classical characterizations, e.g., the dielectric constarfi2&: & Point which will become clear from the derivations, is

¢(x) and magnetic permeabilify(x) in the case of the elec- that thig general structure is not_inﬂl_Jenced py the details of
tromagnetic wave. It is well known that the classical fieldstn® various wave equations, as is widely believed.
are the limiting cases of their respective quantum fi¢&ls
In more exact terminology, the classical fields are quantum
fields at the so-called tree, or nonloop, level. Itis at this level The starting point of most works on classical waves are
based on the wave equations. However, the formalism of
Lagrangian field theory provides a more systematic frame-
*Permanent address: Center for Advanced Study, Tsinghua Univork for the consideration of many formal aspects of the
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versity, Beijing, China. classical wave systems. The quantum version of this formal-
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guantum electrodynamics. This algorithm can be usefullyror a static inhomogeneous medium with dielectric coeffi-
employed in treating certain theoretical aspects of the classtient e(x) and magnetic permeability(x), we define

cal waves. Below, we use it to derive the Ward identity as a

mathematical statement of the energy conservation.

The starting point of our approach is the Lagrangian den-
sity. It gives rise to the desired wave equation as a result of
the action principle, and conservation laws as consequenc
of the symmetry properties of the Lagrangian. Below we lis
the Lagrangian densities for the scalar wave, the elastic

wave, and the electromagnetic wave.

Scalar wave

HOk: 8F0k

()
Hk1: /.LFkl.

ﬁshe source-free Maxwell equations can be written as

There are two versions of the wave equation for the scalar

wave amplituded(x,t):

[6(x)92— V2] p(x,1)=0, (1)
v 1 v =0 2
7=V o0 V/|sx=0. 2

For Eq.(1), the Lagrangian density is

LSY=3[e(X) 0y pdyp—V -V $], (SY
while, for Eq.(2), it is
L<52')=E XY ¢>—iv¢~v¢ (S2)
2| T g(X) '
Elastic wave

Elastic waves are vector in nature. The wave equation for

locally isotropic but inhomogeneous media is of the form
pSj— dilN(V -9) &+ u(d;sj+d;s)]=0, 3

wheres;(x,t) is the displacement vectos(x) the mass den-
sity, AM(x) the longitudinal Lame’selastio constant, angu(x)
the shear modulus. The parametric functipna, andu are

aH=0, (89)
9oH%+ g9 H* =0, (8b)
or, in four-dimensional notation,
d,H*"=0. 9)
The Lagrangian density that yields H®) is
LEW= —2HF . (EM)

SCALAR WAVE CASE

The case of the scalar wave is the simplest of the three.
Since the train of considerations is very similar in all the
three cases, we treat the case of the scalar wave in detail to
fully illustrate the major points of our derivation.

There are two versions of the scalar wave equation. We
consider the version corresponding to

[e(x)3; = V?](x,1)=0, (1)
with the Lagrangian density given by
LSV=3[e(X)d¢porp—V -V $]. (S1

Known as Noether’s theorem, the symmetry properties of
the Lagrangian density directly imply the corresponding lo-
cal conservation laws. Because of the coordinate dependence
of &(x) in Eq. (S1), the Lagrangian density is not invariant
under spatial translations. As a consequence, wave momen-

position dependent, but assumed to be time independent. THEM is not conserved; momentum can be interchanged be-

Lagrangian density for the elastic wave equati8his

LEY=2[p(92 = N(Tre;))?—2psie5], (EL)
where the strain tensor is given by
Sij:%(aiSj‘f'ajSi). (4)

Electromagnetic wave

tween wave and medium. However, the invariance property
of Eqg. (S1) under time translation leads to the conservation
of the wave energy. There is a well-established procedure of
finding the expression for the energy-momentum tefsay;
which, for the one-component scalar wageis given by

L g

TMV:M W—gﬂyL. (10)

While the energy density i$,9, the momentum density or

The electromagnetic wave equations are the Maxwelthe Poynting vector iF,,. (We note thafT o+ Ty in non-
equations. We choose to use the four-dimensional notationgniform media as in our present casgxplicitly, we have

x*=(t,x), whereu=(0,1,2,3), and the metric tensor with

signature
g,uvzg;“}:(l,_ 11_ 11_ 1) (5)

In addition, Greek subscript¢superscripts denote four-
vector indices(0,1,2,3, and Roman subscrip{superscripts
the 3-vector indices. The four-potential is denoted A,
and the field strength tensor by

FAv=ghAY— §"AX, (6)

Too=3(epp+V -V b), (11)

Tk0:3k¢¢-

The local energy conservation law that follows fromtNo
her's theorem is

(12)

9T 40=3,TH0=0, (13

which can be explicitly verified by using wave equatidn.
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Using the formalism of quantum field theory, we quantizesponding Ward-Takahashi identity that are relevant. These
the wave system by imposing equal-time commutation relatwo types of Ward-Takahashi identities are naturally differ-
tions on the cannonically conjugate variables. Conjugate tent in structure.
the field ¢(x,t) is the generalized momentum variabte We follow the well-established procedure, due to Taka-
given by hashi[6], to derive the Ward-Takahashi identity for the en-

ergy conservation. For this purpose, we consider the three-
point function (0| T{T#°(x) #(y) ¢(2)}|0), which has six

m(X,)= %zg(x)‘lf’(x’t)' (14 possible orderings of the three times associated witly,
andz. As a consequence of the energy conservation relation
The quantization conditions are (13), we obtain
[B(x.1), 7(y,1)]=i8(x—Y), I T{THO(X) b(y) d(2)} = 8(x° = yO) T{[ TXUx), b(y) 1 (2)}
[6(x.0),4(y.1)]=0, (15) Fo0C=2)T{AY)
X[T%x), (2)1} (21)

[m(x,t),m(y,t)]=0.
The equal-time commutators in the above equation can be
We recall that thes in Eq. (14) is a numerical function, not  easily evaluated by using the quantization conditici®, to
a quantum operator. yield
We define the propagator functioc@(x,t;x’,t") by the
vacuum’” expectation value of the time-ordered product 5= yO) [ TOx), b(y)] = : Fx—y)dly), etc.

G(x,t;x',t")=i(0|T{p(x,t) p(x',t')}|0). (16 (22)

Here|0), normalized to 1, represents the ground state of thesecause of
system, which is not translationally invariant in our present

finh dia, ahdlenotes ti deri : d
cecoraing to e definion e TR g T 62} A~ Pty (2]
T{A(X,1) p(X',t")}=0(t—1t") p(X,1) (X', 1) + p(t' — 1) ad
- =ET{¢(V)¢(Z)},
><¢(X "t )(b(X,t), (17) y
where 4(t) is the step functiond(t)=0 for t<0, and 1 for from Eq.(21) we obtain the relation
t>0. On using the wave equatidf), the property P
i ¥ T{THO =5 (x—-y) — T
ab(t)=4(t), 1 {T2() () $(2)} = 8*(x~y) , {o(y)b(2)}
and the quantization conditiori5), it is easy to verify that 4 (x—2) i T{b(y) d(2)}
at, '
[e(X)92— V2]G(x,t;x/,t")=i8(t—1") 23
X(0|[&(x) (), b(x")]0) which, upon taking the “vacuum” expectation value, yields

=% (x—x"), (19 P
X 0 = _ —v) —
where 5*(x—x')=8(t—t')8(x—x'). The propagator func- T (OIT{TH(X) b(y) $(2)}|0) = — 8*(x—y) aty Gx.2)
tion G defined by Eq(16) is, therefore, the Green’s function 9
of the wave equatiofil). We note that by its definitiofl6), - 8%(x—2) — G(Y,X).
the Green'’s function is symmetric: Ity
G(x,x")=G(x’,x), (20 24
_ ) _ This equation provides the basis for the derivation in the next
where we have opted for the four-dimensional notationisection of the Ward-Takahashi identity for energy conserva-
G(x,x")=G(x,t;x",t"), etc. tion in disordered media.
To each conservation law there is a corresponding Ward
i(_jentity, whi(_:h relates a vertex function to the Gregn’sl func- DIEEUSIVE TRANSPORT OF SCALAR WAVES
tion. The original Ward identitf7] and its generalization, IN DISORDERED MEDIA
the Ward-Takahashi identity6], are mathematical state-
ments of electric charge conservation. In classical wave sys- Theoretical description of diffusive behaviors of classical
tems like the scalar wave system, there is no charge invaves in disordered media is of great interest. For example,
volved; the original Ward-Takahashi identit§] obviously  the analog of the electronic Anderson localizatidr8] in
does not apply. In cases of classical wavestaticinhomo-  classical wave systeni$4] is directly related to the diffusive
geneous media, it is the energy conservation and the correrature of wave transport as a result of multipédastic and
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inelastig scatterings. While in the case of an electronic sys-
tem the conservation law of electric charge underlies the dif-
fusion of electrons, it is the conservation law of energy that  x A&
underlies the diffusive transport of classical waves. It is,
therefore, of importance to have a clear understanding of the
implications of the energy conservation in a diffusive envi-
ronment. o i i

In disordered media, the diffusive transport of scalar FIG. 1. Generic diagram showing the schematic content of Eqs.
waves takes place as a result of random multiple elastic sca@o)’ (63), and(87).
terings of waves by the disordered scatterers, phenomeno- P
logically represented by the parametric functiofx). The w _ce-1__ 7 _
disordered nature of the medium is accounted for by consid- axr“(ﬂxh) G (7 x)atxé“(x s)
ering a statistical ensemble of medium configuratiptfs).

The diffusive wave transport behavior, which is stochastic in +GO(x— g)igﬂr( 7—Xx). (28
nature, is obtained by averaging the effects of multiple scat- dty

terings over different configurations of the ensemble. Thi
statistical treatment we refer to as ensemble averaging
configuration averagingg].

The “vacuum” expectation value
(0| T{T%(x) p(y) #(2)}|0) in the preceding section, in _ 1
terms of a diagram, is two waves emerging from the energy T % |X|s) =G~ 1(5,x)=8*(Xx—5)
vertex atx, one propagating tg, and the other t@, under- !
going multiple scatterings with the scatterers of the medium B 1
along the way. When configuration averaging is applied to it, -G Yx,9)=8%n—x), (29
the disordered medium mediates an effective interaction, sta- !

tistical in nature, in the wave systefh5]. The net effect is where 199 s the charge vertex function, ar@ is the

the |ntrodHctlon OT arl extended structure to th_e energy .Verte)électron Green'’s function. While EQR9) describes the flow
and the “averaging” of the wave propagation functions.

) . . . : . .. of charge, Eq(28) describes the flow of energy, signified by
This chain of conS|derat|0ns dictates the following deflnltlonthe unmistakable signature of thieear time derivative
of the energy-vertex functiofi ,(#|x|{) by

It is more useful to derive an alternative version of the
(O|T{T ,o(x) B(y) (2)}0)®

ZThis is to be contrasted with the original Ward-Takahashi
Identity [6,7,16 for charge conservation, which is of the
form

Ward identity that relates various scattering effects, without
the involvement of the vertex functiolr,. This can be
1 1 achieved with the help of an integral equation that relates the
:j d*y d*s—= GO (y— )T, (7]x|s)+ GO (s—2), energy vertex functioir, to the wave-wave, or two-particle,

! I scattering kerneK. Considerations similar to those that are
(29 used to derive the Bethe-Salpeter equafibf] lead to the

o . . integral equation
where the left-hand side is the configurationally averaged g g

“vacuum” expectation value, an@(® the averaged propa- 0

gation function. Use has also been made of the fact that the.( 77|X|€)=FL)(77|X|§)—J' d*y dly’d*z d'z’G"®

averaged propagation function depends only on the differ-

ence of the two coordinates. X(z2' = 2)T (zx|y)G'®(y—y")K(ns;y'Z'),
Application of configuration averaging to both sides of (30)

Eq. (24) yields the following equation;

which, we note, has a structure similar to a corresponding

integral equation in quantum electrodynamids’]. Here,

I'? denotes the vertex function for a homogeneous refer-

ence medium, and&(#s;y’z’) the irreducible wave-wave

&Q‘f d*n d*sG®(y— )T ,(7|x]s)G®(s—2)

=54(x—y)iG<e>(x—z)+ 64(x—z)iG(e>(y—x). scattering kernel, usually referred to as the Bethe-Salpeter
Ity Ity kernel.
(26) The structure of the integral equati¢B0) is schemati-

cally shown in Fig. 1. Heuristically, the picture is as follows.
Making use of the inverse of the Green's function At the vertex emerge two waves, which undergo multiple
G®-1(z—s"), defined by scatterings with the medium as well gffective) collisions
with each other as they propagate. The integral equation is an
4y &) (-1 N , economic representation of those multiple scatterings in
f d*z G s~-2)G (z—s")=0%s—s"), etc, terms of the Green’s functions, which include all scattering
(27) effects with the medium. The irreducible “two-particle” ker-
nel, K(nZ;y'z'), summarizes theeffective wave-wave
we obtain from Eq.(26) the Ward-Takahashi identity for scatteringg17] from the two input channel&y;{) to the two
energy conservation: output channelsy(’;z’).
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By differentiating Eq.(30) and using Eq(26), we obtain  where

s _ T dq
kT (X[ = akT . (m|x|£) (9 z(x)zf @7 €93 (q), etc. (37
= —f d'y d*z] 6%(x—2) it GO (x—y) We note that the energy coefficiergs and @o+ po) in Eq.

(36) reflect the time derivatives in Eq35), which can be

traced to the time derivatives in the basic Ward-Takahashi
K(7{y2). (31)  identities(26) or (28). We remind ourselves that the linear

time derivative is a signature of energy flow. In the more

+ 84(x—y) % G®(z—x)

The use of Eq(29) yields conventional form, thaliffusive Ward identityis expressed
as
d
©=1( ) — GO—1( )] — _ dd
(G r=x) =G =] 3 8'x=0) | Sms(6a+ @ -G a+ptal
(2)
d
+[GO x— )-GO Y(x—)] © 5 (p—x) XU(-0q,q9+p,w)
; ’ =3(q+p)~ () —E(q.p), (39)
=—J d*y d*z| 6*(x—2z) S GO(x—y) with
X
J E(q,p)= 22 E(q)—f To G®(q+p+w)
+ 84 (x—y) o= G'¥(z—x) K9 (¢ 2), (32 o (2m)°
X
whereG( is the Green’s function for the homogeneous ref- XU(—q,g+p,m)|. (39

erence medium. Due to configurational averaging over the
coordinates of the scatterers, only three of the four coordi- The diffusive Ward identity is crucial for the derivation of
nates inK(7¢;yz) are independent. We choose-+<y), ({  wave diffusive transport behavior on the basis of the Bethe-
—2), and (y—2) to be the three independent coordinates.Salpeter equation, the basic reason being that it is the energy
Furthermore, since the two input channels are mediated bihat is being diffusively transported. As such, it inevitably
an effective static potential which is time independent, im-affects the wave diffusion constant, which is generally rec-
plied by the independence efx) on time, f/—z) can there- 0gnized to be the product of the transport velocity and the

fore be replaced byy(—z). We shall use the notation transport mean free path. In this context, we point out that
the termE(q,p) in Eg. (38) has indeed been recognized to
K(ni;yz)=U(np—Vy,{—2,y—2). (33 affect the energy transport velocity that appears in the diffu-

] ] ] ] sion constant, especially near resonant scattefils On

By using the inverse of the configurationally averagedie other hand, as is clear from the derivation of the diffusive

Green's function in the form Ward identity (38), the origin of theE(q,p) term can be
GE-1_GO-1_% (34) traced to the presence of the time derivatives in the original

' form of the Ward-Takahashi identiti€26) or (28).

where3, is the self-energy operator that accounts for all the We note that our resu(B6) or (38) differs from the result

multiple scatterings, one obtains the multiple-scattering fornPf Ref.[4]. The difference will be discussed in a later section

of the Ward identity, which we shall name ttifusive Ward ~ When we discuss the case of electromagnetic waves.

identity. ALTERNATIVE VERSION OF THE SCALAR WAVE

d J . .
S (7—x) o SHx—0) +3(x=9) o 8 (p—x) Another version of the scalar wave equation is
X
1
2
a a G = V- —5 Vig(x1)=0. @
:j d4y d*z 64(x—z) e G(x—y)+ 54(X—y) . e(X)
X X The Lagrangian density corresponding to this equation is
X G(z—x)|U(np—y,{—2y—2). (35 sa_1L 1

In momentum space, thdiffusive Ward identityis of the

form In this case, the energy-momentum densities, according to

the general formul&10), are
do=(d+p)—(Go+Po)2(q)

a1 ¢¢+1V¢-V¢) (40)
d3w 00 2 € ’
:f W[QOG(e)(q+w)_(QO+po)

1
(S _—
XG(q+p+w)]U(~d,a+p.w), (39 Tio" = Hedod @D
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which again satisfies the conservation equation a”TifoL):O- (50)

nT(S2
P Tug =0. (42) The system is quantized by imposing commutation rela-
The same quantization conditiot$5) are imposed on the tions on the fields; and their conjugates given by
field ¢ and its conjugate, which is
. JLED
w52(x,1) = p(x,1). (43) = s =ps;. (51

It can be easily verified that the propagator function, defined L .
Quantization conditions are

by
G(x,x")=i(0[T{(x) #(x")}|0), [si(x,t),mi(y,t)]=i8;;8(x—y) (52
satisfies and
2 1 ’ ’ —
%=V el V|G(x,x")=8%x—x"), (44) [si(x.1),s;(y,t)]=0, (53
and is the Green’s function for the scalar wave equat®n [ (Xt),m;(y,t)]=0.

We can proceed in complete parallel to the previous case
to derive the basic Ward-Takahashi identiti@$) or (28)  We note that whiles; are quantum operatorsjs a numerical
and the diffusive Ward identitie@6) or (38). The forms of  function.
the Ward identities are exactly the same as the previous case. The propagator functio®(x,x) is defined by
Only the precise contents of the Green'’s functions are differ-

ent in the two cases. ij(x,x’):i(0|T{sj(x)sk(x’)}|0). (54)

ELASTIC WAVE CASE We note that, by definition,

The case of the elastic wave has been considered in detalil
elsewherg11]. For completeness, we present a brief account Gik(x,X") = Gyj(X",x). (55)
here. The elastic wave equation is
. On account of the elastic wave equati@ or (45) and the
pSj— [NV -9) &+ u(disj + 95)]1=0, (3 commutation relationg52) and (53), one can straightfor-
wardly prove, as in the scalar wave case, that the propagator

or, function defined in Eq(54) is the Green'’s function for the
0y;5,=0, (45  elastic wave equation, and satisfies
where 0;;Gk(X,X") = 8y 8*(x—x"). (56)

0ij=p(91)76i = 3i(N9;) =3 (d) = 6V - (V). (46) As in the case of the scalar waves, we consider the

The Lagrangian density for the elastic wave equation is'vacuum’ expectation valugO| T{T{5”(x)s(y)sm(2)}/0).

given by We can easily verify that
L= 2lp(9 N (Trey)*=2pees], BD - eT(TB008,(y)sn(2)
with = 50—y T{[THE" (%), 51(y) Ism(2)}

eij= (08, + ;). 4) +8(x°=20) T{s1(Y)[ Tho"(X),5m(2) 1}

The formula for the energy-momentum density is 1 _
== S =Y T{s1(y)sn(2)}

3
ALEY ps;
To'=2 (") a7 9ut ™, (47 1
o + 2 8- 2)T{sy(y)sn(2)}
according to which,
1 9
Too ' =3[p(9+N(Trey))*+2ueyei]  (49) =7 S0y - Tsiy)sn()
and 1 P
(EL) - - T 8 (x—2) o Tis1(Y)su(2)}, (57)
TkO :)\(V'S)Sk+,u,Sj(ﬁjSk+aij). (49) z

The energy conservation equation may be verified to be  from which we obtain
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IO| (T m(2)}0 _ ~ d
O GO en(20) (6 H7=X= G (n=x)] 5 #x—0)

=—o'x-y) o G.m<xz> 54 (x=2) o G.m<yx> 5
+[Ge x—0 -G~ l(X—é)]Rﬁ“(n—X)

(58)

The energy irreducible vertex functidi(#|x|¢), defined f d%y d*z| 8% (x— z) = G (x—y)

by

EL
(OIT{T," (X)31(y)sm(2)}0)* +8(x—y) - G(‘”(Z—X) Uapij(7—Y,{~2y~2).
1 .
= f d* d*¢ = GIP(y— n)rifwlxlo Gin(¢—2), (64)

(59 whereG is the Green’s function in the homogeneous ref-

satisfies erence medium, and

agf d*n d*G{P(y— T (5IX| ) Giei( L —2) Kab;ij(7£;Y2)=Uap:ij(7—Y,.{— 2.y~ 2). (65

d © Again, the static property of the medium has been made use
=5%(x—y) 7t Cim(X= z)+ &%(x— Z) e G my=x). of, namely, the parametric functiop$x) and w(x), are inde-
* pendent of time. In terms of the “self-energy. ,,,, defined
(60) by
Making use of the inverse of the Green’s function
G{? " !(x'.y), defined by G =G T, (66)

f dYy GI¥ (7' —y)G{P(y—5)=8;6%n'—7n), etc,  from Eq.(64) one obtains the energjiffusive Ward identity
(61) for elastic waves:

we obtain the energy Ward-Takahashi identity for the elastic P P
wave in its basic form: S an( 7—X) T SN Xx— )+ ap(Xx—20) I 5 p—x)
X X

d
KTR(IX =GP H(n=x) == 8'(x={) j dy d'z

S (x— 7) G(e)(x—y)

J
(e)—=1,y, _ —
TGP0 o 8 (n—x). (62 + M x—y) 7 G(e)(Z—X)

Except for the vector indices in the definitions of the vertex e o
function and the Green’s function, the structure of this iden- *Uapij(n=y,6=2y~2), ©7)
tity is of the same form as the corresponding ident2§) for
the scalar wave. Again, there is the appearance of the linear, in terms of the momentum-space representation,
time derivative, which is a signature for energy flow.

To derive thediffusive Ward identitfor the elastic wave,

+p)—(qo+
we make use of an integral equation for the vertex function Ao>an(d p) (G0 Po)>an(@)

similar to the integral equatiof80) for the scalar wave case. (e)
b
(X[ ) —(go+ po)G<e>(q+p+w)]Uab;ij(—q,q+ p,®),

68
=Pl [ oty dy'a'z o2 Gl z-2) (68)

XTI [X|y Y GE(Y ~y)Kapij (7L:Y ), (63  Where

and is understood to hold for the configurationally averaged d'q

quantities. Herek ,,.i;(7¢;y2) is the “two-particle” Bethe- Eab(X):f 2m) e'97%ap(q), et
Salpeter kernel that also appears in the Bethe-Salpeter equa-

tion. The use of Eq(62), in terms of the configurationally

averaged quantities, gives Another form is
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dPw This is the so-called Gauss-law constraint. In this gauge, the
j 2n)7 [GiP(q+ @)~ GP(1+ p+ @) U apyj equation of motion(8b) is of a form that involves only the
spatial components of the vector potential:
X (0,94 p,@)=Zap(q+P) —2ap(d) —Ean(9.p).

with where

o O .= 240 i k_ ok o
Eab(q)—f ﬁe}?(mwmuam O'j=8()28' |+ (dyu) (8"~ 5")

p
Eab(0,p) = —
Jo

+ u (890 = 8 d"). (74)
X(—-q,9+ p,w)}. (70) The Lagrangian density is
LEW=—ZH*F,,. (EM)

ELECTROMAGNETIC WAVE CASE

The case of the electromagnetic wave is similar to buffhe canonical conjugate #; is
much more complicated than the case of the elastic wave.
The tricky complication here is caused by the well-known . gLEW
gauge freedom of the electromagnetic field. Fortunately, m " (A
there exists a wealth of accumulated knowledge on how to
deal with and even to exploit the gauge freedom in gaugejnder the weak constraint conditigi@2), the quantization
theories, of which the quantum electrodynamics is the simgonditions arg 19]
plest. One lesson learned is that one can judiciously choose a
particular gauge for a particular purpose, knowing that the [A(X.1),m(y,)]=i883(x—y), (76)
final result is independent of the gauge chosen. In our present
case of electromagnetic waves, the field equations are thg, 4
Maxwell equations

=H"%=¢(x)(d'A°— 3°A}). (75)

[A'(x,1),Al(y,1)]=0,

aHC=0, (8a) (77
9oHOL 3 HK =0, (8b) [7'(x,t),7(y,t)]=0.
or The energy-momentum tensor is given by
3,H#=0, 9 TEW=H M, g, LEW, (79)
where The energy conservation equation is
HO=eF, (7) T =0 (79
HkI:MFkI.

__ For the electromagnetic field, the propagator function
In terms of the four-potentiah , , the field strength tensor is  GI¥(x,y) is similarly defined by

Fuv=0uAv= Ay G (x,y)=i(0| T{Al (x)AX(y)}|0), (80)

It is clear that Eq(9) is invariant under gauge transforma-
tions. Thus, in material medi@s opposed to vacuymwe
still have a gauge invariant theory. In our considerations to P ik o o - ‘
follow it is most convenient to choose a gauge such that O jG™(x,y) =1 8(x"=y°)(0|[&(x)A'(x),A"(y)]|0)

=554 (x—y), (82)

which can be verified to satisfyl 9]

Ag=0, (77

This is the so-called temporal gaugis]. This gauge condi- and is, therefore, the Green's fu_nction for the wave equation
tion eliminates one of the four apparent degrees of freedorh/3). We note that in the derivation of E(B1) the temporal
represented by the four-potential, . Since the Maxwell ~9auge condition(71) played a crucially important role; it is
system has only two intrinsic degrees of freedom, we need t#) this gauge only that the propagator function defined by Eq.
impose another condition in addition to Bg1). It is known  (80) is the Green’s function satisfying E(B1).
[18] that this additional condition is a constraint on the Again, we consider the “vacuum” expectation value of
physical states based on Ega): T{TCP(X)AL(Y)An(2)}, for which we can similarly prove,
on using the commutation relatioig6) and(77) as well as
aka°| i =0. (72 the temporal gauge conditidi@l), that
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a“<0|T{T<EM> X)A1(Y)Ar(2)}|0) T2 |x|0) =TV 7|x| ¢)
= I_ 54()(_Y)<O|T{F01(X)Am(z)}|o> _f d4y d4y/d4z d4zf'éjﬁle)(zf_z)'f:ﬂ(z|x|y)
+iE 8*(x—2)(0| T{Fom(X)A1(y)}|0) XGE&(y—y ) Kapij (75:y'2"), 87)

1 _ WhereRab;ij is the Bethe-Salpeter kernel for the electromag-
=— S*(x—y){O|T{AL(x)An(2)|0) netic wave system. We combine the two equati¥ and
' (87) to arrive at

1 . ~ ~
7 8 (x=2){0[T{AR()As(y)}|0) AT (nX ) = kT (]X[0)

z 64(x—z) — G(e)(x y)

- 4, 4
=—o'x-y) o Glm<xz> = [ty

J ~ ~
—Vv) — G®(7z— . .
_54(X Z) mI(X y). (82 +54(X y) at, Gji (z—x) Kab;|1(77§,y2)- (88)

| f the “self- s fi
Again, the temporal gauge conditididl) is crucial in the n terms of the “self-energy operatorZ,y, defined by

gﬂove deri'vatior'l. The irreducible energy vertex function G(e) 1_ G(O) 1 gab, (89)
7 (€lx| ) is defined by
(EM) av whereG( is the Green’s function for the homogeneous ref-
(O T{T ;0" ()AL(Y)An(2)}]0) erence medlum Eq$86) and(88) lead to the following form
1. _ 1. of the diffusive Ward identity:
= f d*y d*¢ = GIP(y= T (lX]0) T GiG(¢{~2). ; ;
3  Sa(n7X) 5 00 O+ Sa(x=0) 5 8=

d
It then follows from Eq.(82) that :f d%y d*z 8% (x—2) - G(e)(x y)+ 5H(x—y)
X

ot [ dt dte Gy mr a0 -2

0 ~ ~
X == G (z=X) |Uavij(7=y.{—2y=2). (90
X

=8 (x—y) 7t Gl (x—2) In momentum-space representation, Ef) is of the form

p z)—G )(y—x). (84) Qoan(d+P)— (ot Po)Zan(q)

dw ©
~ :f 277 [4oGji”(q+ w)
Upon using the inverse of the Green’s functiod®G*( 7’

~), defined by ~(do+Po) G (A+ P+ @)Uy (— .+ Poca),
~ (o1 ~ (91
f d*y G~ (ﬂ’_Y)Glj(y-ﬂ):5ij54(77’_77): etc.,
85) where
we obtain the basic Takahashi-Ward identity corresponding gab(x):f dg L €953, (q), etc.
to energy conservation: (2m)
or

d
AT (x| =GP~ 1(’7‘X)a_tx54(x‘0

diw
5 f 27 LG (At @)= GP(a+ptw)]
+GIP T (x—=¢) == 8(n—x).  (86) _
X XUapij(—9,9+p,m)
To apply this basic identity to the diffusive transport of =§ab(q+ p)—gab(q)—Eab(q,p), (92

electromagnetic waves, we again make use of the integral
equation for the irreducible energy vertex: with
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_ Po _ The remarks here also apply to the case of scalar waves,
Ean(d,p)=— % San(q)— J 27 G(e (g+ p+ @)U g where our result is similarly different from the result of Ref.
[4]
The system described by the Lagrangian denkify"
(93  has very interesting theoretical properties. It has full gauge
symmetry, but apparently describes “photons” propagating

We note that the Ward identities in the case of the eIectro'n media with velocities different from the velocity of light
magnetic waves are identical in form to those for the elastid? vacuum. The “photons” in inhomogeneous media, there-

waves. The difference, however, is hidden in the Gauss-lafP'®: have effective mass. The Lagrangian, if regarded as
constraint equatiofi72) imposed on the physical states. defining a truly quantum field-theoretic model, demonstrates,

We were brought to the attention of the work of Bara- even at the classical “tree” level, that masslessness and

banenkov, Zurk, and Barabanenkf&], who used a com- 9auge invariance have no necessary logical relationship. It
pletely different approach to derive a Ward identity for the Should be of considerable interest to understand more fully

electromagnetic wave in media witonstant magnetic per- M€ prope(;t(ijesd of the ”f‘c()’del- X 50 b o
meability Their result looks somewhat similar to ours. How- _ NOt€ added in proofOur approach can also be applied to

ever, coefficients quadratic in frequenciesergies perme- e model considered by Vollhardt and We [1] for elec-

ate throughout their work and appear in their final result,ronic systems to reproduce the Ward identity they derived
whereas our results, e.g., E§1), show a linear dependence for charge conservation. In addition, there is in their model
of the coefficients on energy. The origin of tleear depen- Fhe C.O”S.ef‘.’a“O“ of energy, whic_h implies_ another V\(ard
dence according to our derivation, is clear. It is the linear identity similar to the ones we obtained in this paper. This is

time derivative in the basic Ward-Takahasi ident®g). As  discussed by one of the authors elsewH@@.
we already emphasized, the linear time derivative is a signa-
ture of energy flow. While the version of the Ward identity
of Ref.[5] can be interpreted to be consistent with ours in the  We wish to thank Professor L. N. Chang for illuminating
limit of infinitesimal frequency difference,, it should be discussions. P.S. acknowledges the support of Hong Kong
noted that our Ward identities, for geneggx) and u(Xx), Research Grants Council Grant No. HKUST685/96P for this
are valid for arbitrary values of the frequency differemge work.

><(—q,q+p,w) .
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